Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 103(4): e14512, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570316

RESUMO

A thorough search for the development of innovative drugs to treat tuberculosis, especially considering the urgent need to address developing drug resistance, we report here a synthetic series of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o) as potent anti-tubercular agents. These morpholino-indolizines were synthesized by reacting 4-morpholino pyridinium salts, with various electron-deficient acetylenes to afford the ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o). All synthesized intermediate and final compounds are characterized by spectroscopic methods such as 1H NMR, 13C NMR and HRMS and further examined for their anti-tubercular activity against the M. tuberculosis H37Rv strain (ATCC 27294-American type cell culture). All the compounds screened for anti-tubercular activity in the range of 6.25-50 µM against the H37Rv strain of Mycobacterium tuberculosis. Compound 5g showed prominent activity with MIC99 2.55 µg/mL whereas compounds 5d and 5j showed activity with MIC99 18.91 µg/mL and 25.07 µg/mL, respectively. In silico analysis of these compounds revealed drug-likeness. Additionally, the molecular target identification for Malate synthase (PDB 5CBB) is attained by computational approach. The compound 5g with a MIC99 value of 2.55 µg/mL against M. tuberculosis H37Rv emerged as the most promising anti-TB drug and in silico investigations suggest Malate synthase (5CBB) might be the compound's possible target.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos , Relação Estrutura-Atividade , Malato Sintase , Morfolinos , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana
2.
Chem Biol Drug Des ; 103(3): e14514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531606

RESUMO

Series of 7-(Trifluoromethyl) substituted indolizine 4a-g was synthesized using the one-pot method. Spectroscopic techniques such as IR, 1H-NMR, 13C-NMR, and HRMS were used for the structure confirmation of newly synthesized compounds. These 4a-g compounds were tested for their anti-inflammatory activity. In this study, we identified novel indolizine derivative compounds 4a-g selectively targeting COX-2 enzyme, tumor necrosis factor-α (TNF-α) and, interleukin-6 (IL-6). The in silico docking studies of 4a-g showed that these compounds have a higher affinity for COX-2 enzyme, TNF- α, and IL-6. In silico ADME profile analysis predicts that these compounds have good gastrointestinal tract and blood-brain barrier absorption. In vitro studies showed that compound 4d significantly reduces the level of COX-2 enzymes as compared to indomethacin. Compounds 4e, 4f, and 4a were also found to significantly reduce the level of TNF-α, while compounds 4f, 4g, and 4d, showed a reduction in the level of IL-6 when compared to indomethacin. Compounds 4a, 4d, and 4f also reduces nitric oxide (NO) level, compared to indomethacin. Overall, the current study illustrates significant anti-inflammatory activities of these novel 7-(Trifluoromethyl) substituted indolizine derivatives.


Assuntos
Anti-Inflamatórios não Esteroides , Indolizinas , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 2/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa , Interleucina-6 , Anti-Inflamatórios/farmacologia , Indometacina , Indolizinas/química , Simulação de Acoplamento Molecular
3.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315452

RESUMO

According to WHO, in 2021, there was an estimation of 247 million malaria cases from 84 malaria-endemic countries. Globally an estimated count of 2 billion malaria cases and 11.7 million deaths due to malaria were recorded in the past two decades. Further, the emergence of drug-resistant mosquitos threatens mankind. Therefore, the development of newer larvicidal agents is the need of the hour. This research identifies a new series of variably substituted indolizines for their effectiveness in controlling Anopheles arabiensis larvae through larvicidal activity. The series of Ethyl 3-benzoyl-7-(piperidin-1-yl)indolizine-1-carboxylate analogues (4a-j) were synthesized by reacting 4-(piperidin-1-yl)pyridine, phenacyl bromides with ethyl propiolate via 1, 3-dipolar cycloaddition and the green metrics of the process are reported. All the newly synthesized compounds were characterized by spectroscopic techniques such as 1H NMR,13C NMR, FT-IR, and HRMS. The larvicidal effectiveness of the newly synthesized compounds was assessed against Anopheles arabiensis. Among the compounds studied, namely 4c, 4d, 4e, and 4f, displayed the most notable larval mortality rates within the series, reaching 73%, 81%, 76%, and 71% respectively, in contrast with the negative control acetone. In comparison, the standard Temephos exhibited a mortality rate of 99% at the same concentration. Furthermore, computational approaches including molecular docking and molecular dynamics simulations identified the potential targets of the series compounds as the larval Acetylcholinesterase (AChE) enzyme and the Sterol Carrier Protein-2 (SCP-2) protein. However, it is essential for these computational predictions to undergo experimental validation.Communicated by Ramaswamy H. Sarma.

4.
Org Biomol Chem ; 21(42): 8563-8572, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853847

RESUMO

A mild, catalyst and oxidant-free efficient protocol for synthesizing α-ketothioamides is reported with a broad substrate scope. The presented protocol demonstrates the confined reactivity of amines. The polysulfide derived from elemental sulfur and amines in an aqueous medium drives the pathway toward diverse α-ketothioamides over thioamides. Substrates with different substituent groups were compatible with the presented protocol, and the respective ketothioamides were separated in good to excellent yields. The ketothioamides, known to exhibit anti-cancer properties, were synthesized by the proposed protocol. Furthermore, the synthetic utility was explored with the typical synthesis of ketoamides.

5.
J Biomol Struct Dyn ; : 1-13, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259506

RESUMO

Malaria is one of the most known vector-borne diseases caused by female Anopheles mosquito bites. According to WHO, about 247 million cases of malaria and 619,000 deaths were estimated worldwide in 2021, of which 95% of the cases and 96% of deaths occurred in the African region. Sadly, about 80% of all malaria deaths were of children under five years old. Despite the availability of different insecticides used to control this disease, the emergence of drug-resistant mosquitoes threatens public health. This, in turn, highlighted the need for new larvicidal agents that are effective at different larval life stages. This study aimed to identify novel larvicidal agents. To this end, a series of ethyl 2,4,6-trisubstituted-1,4-dihydropyrimidine-5-carboxylates 8a-i was synthesized using a three-step chemical synthetic approach via a Biginelli reaction employed as a key step. All title compounds were screened against Anopheles arabiensis to determine their larvicidal activities. Among them, two derivatives, ethyl 2-((4-bromophenyl)amino)-4-(4-fluorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate 8b and ethyl 2-((4-bromo-2-cyanophenyl)amino)-4-(4-fluorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate 8f, showed the highest larvicidal activity, with mortality of 94% and 91%, respectively, and emerged as potential larvicidal agents. In addition, computational studies, including molecular docking and molecular dynamics simulations, were carried out to investigate their mechanism of action. The computational results showed that acetylcholinesterase appears to be a plausible molecular target for their larvicidal property.Communicated by Ramaswamy H. Sarma.

6.
Food Funct ; 14(10): 4734-4751, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37114361

RESUMO

Pharmacological activation of nuclear factor erythroid 2 related factor 2 (NRF2) provides protection against several environmental diseases by inhibiting oxidative and inflammatory injury. Besides high in protein and minerals, Moringa oleifera leaves contain several bioactive compounds, predominantly isothiocyanate moringin and polyphenols, which are potent inducers of NRF2. Hence, M. oleifera leaves represent a valuable food source that could be developed as a functional food for targeting NRF2 signaling. In the current study, we have developed a palatable M. oleifera leaf preparation (henceforth referred as ME-D) that showed reproducibly a high potential to activate NRF2. Treatment of BEAS-2B cells with ME-D significantly increased NRF2-regulated antioxidant genes (NQO1, HMOX1) and total GSH levels. In the presence of brusatol (a NRF2 inhibitor), ME-D-induced increase in NQO1 expression was significantly diminished. Pre-treatment of cells with ME-D mitigated reactive oxygen species, lipid peroxidation and cytotoxicity induced by pro-oxidants. Furthermore, ME-D pre-treatment markedly inhibited nitric oxide production, secretory IL-6 and TNF-α levels, and transcriptional expression of Nos2, Il-6, and Tnf-α in macrophages exposed to lipopolysaccharide. Biochemical profiling by LC-HRMS revealed glucomoringin, moringin, and several polyphenols in ME-D. Oral administration of ME-D significantly increased NRF2-regulated antioxidant genes in the small intestine, liver, and lungs. Lastly, prophylactic administration of ME-D significantly mitigated lung inflammation in mice exposed to particulate matter for 3-days or 3-months. In conclusion, we have developed a pharmacologically active standardized palatable preparation of M. oleifera leaves as a functional food to activate NRF2 signaling, which can be consumed as a beverage (hot soup) or freeze-dried powder for reducing the risk from environmental respiratory disease.


Assuntos
Antioxidantes , Moringa oleifera , Camundongos , Animais , Antioxidantes/farmacologia , Moringa oleifera/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-6 , Alimento Funcional , Fator de Necrose Tumoral alfa , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio
7.
Eur J Pharm Sci ; 182: 106378, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638899

RESUMO

Colorectal cancer (CRC) is the most frequent form of gastrointestinal cancer and one of the major causes of human mortality worldwide. Many of the current CRC therapies have limitations due to multidrug resistance and/or severe side effects. Quinazoline derivatives are promising lead compounds with a wide range of pharmacological actions. In this study, the effect of seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues as potential anticancer agents against two CRC cell lines (HCT116 and SW480) was investigated using cell viability proliferation, migration, adhesion and invasion assays. A liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics approach was used to identify the underlying biochemical pathways disturbed in treated-HCT116 cells. Cell viability proliferation assay revealed that four compounds (C2, C3, C5, and C7) had IC50 < 10 µM with C5 displaying the most potent cytotoxic effect (IC50 1.4 and 0.3 µM against HCT116 and SW480, respectively). Additionally, the compounds showed suppression of wound closure after 72 h, and both C2 and C5 significantly decreased the number of adherent cells and suppressed HCT116 cells invasion. Metabolomics study revealed that C5 induced significant perturbations in the level of several metabolites including spermine, polyamines, glutamine, creatine and carnitine, and altered biochemical processes essential for cell proliferation and progression such as amino acids biosynthesis and metabolism, redox homeostasis, energy related processes (e.g., fatty acid oxidation, second Warburg like effect) and one-carbon metabolism. Our findings indicate that 2,3-dihydroquinazolin-4(1H)-one analogues, particularly C5, have promising anticancer properties, and shed light on the role of metabolomics in identifying new therapeutic targets and providing better understanding of the pathways altered in treated cancer cells.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células HCT116 , Metabolômica , Proliferação de Células
8.
Antibiotics (Basel) ; 11(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884084

RESUMO

A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a-3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k-3m. Thus, compounds 3k-3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.

9.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566029

RESUMO

Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure-activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules' potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Proteínas de Transporte , Inseticidas/química , Inseticidas/farmacologia , Hormônios Juvenis/farmacologia , Larva , Simulação de Acoplamento Molecular , Controle de Mosquitos , Mosquitos Vetores , Pirimidinonas/farmacologia
10.
J Enzyme Inhib Med Chem ; 36(1): 1472-1487, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34210233

RESUMO

A series of 1,2,3-trisubstituted indolizines (2a-2f, 3a-3d, and 4a-4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b-2d, 3a-3d, and 4a-4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a-4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16-64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Indolizinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Antituberculosos/química , Indolizinas/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia
11.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200764

RESUMO

The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a-e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, ß = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Indolizinas/química , Anti-Inflamatórios/química , Cristalografia por Raios X/métodos , Ciclo-Oxigenase 2/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indometacina/química , Relação Estrutura-Atividade
12.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066433

RESUMO

Candida albicans, an opportunistic fungal pathogen, frequently colonizes immune-compromised patients and causes mild to severe systemic reactions. Only few antifungal drugs are currently in use for therapeutic treatment. However, evolution of a drug-resistant C. albicans fungal pathogen is of major concern in the treatment of patients, hence the clinical need for novel drug design and development. In this study, in vitro screening of novel putative pyrrolo[1,2-a]quinoline derivatives as the lead drug targets and in silico prediction of the binding potential of these lead molecules against C. albicans pathogenic proteins, such as secreted aspartic protease 3 (SAP3; 2H6T), surface protein ß-glucanase (3N9K) and sterol 14-alpha demethylase (5TZ1), were carried out by molecular docking analyses. Further, biological activity-based QSAR and theoretical pharmacokinetic analysis were analyzed. Here, in vitro screening of novel analogue derivatives as drug targets against C. albicans showed inhibitory potential in the concentration of 0.4 µg for BQ-06, 07 and 08, 0.8 µg for BQ-01, 03, and 05, 1.6 µg for BQ-04 and 12.5 µg for BQ-02 in comparison to the standard antifungal drug fluconazole in the concentration of 30 µg. Further, in silico analysis of BQ-01, 03, 05 and 07 analogues docked on chimeric 2H6T, 3N9K and 5TZ1 revealed that these analogues show potential binding affinity, which is different from the therapeutic antifungal drug fluconazole. In addition, these molecules possess good drug-like properties based on the determination of conceptual Density Functional Theory (DFT)-based descriptors, QSAR and pharmacokinetics. Thus, the study offers significant insight into employing pyrrolo[1,2-a]quinoline analogues as novel antifungal agents against C. albicans that warrants further investigation.


Assuntos
Antifúngicos/síntese química , Ácidos Carboxílicos/síntese química , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Antifúngicos/farmacocinética , Candida albicans , Ácidos Carboxílicos/farmacocinética , Química Farmacêutica/métodos , Desenho de Fármacos , Fluconazol/farmacologia , Ligação de Hidrogênio , Indolizinas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Quinolinas/síntese química , Quinolinas/farmacocinética , Termodinâmica
13.
Curr Top Med Chem ; 21(4): 295-306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33138763

RESUMO

BACKGROUND: Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). AIMS: Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. MATERIALS AND METHODS: Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4- DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. RESULTS AND DISCUSSION: Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having paratrifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5- positions of 1,4-dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski's rule of five, thereby indicating their potential as drug-like molecules. CONCLUSION: In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.


Assuntos
Proteína de Transporte de Acila/antagonistas & inibidores , Antituberculosos/farmacologia , Di-Hidropiridinas/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases/antagonistas & inibidores , Antituberculosos/química , Di-Hidropiridinas/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Relação Estrutura-Atividade
14.
Metabolites ; 10(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575435

RESUMO

Urolithins are gut microbial metabolites derived from ellagitannins (ET) and ellagic acid (EA), and shown to exhibit anticancer, anti-inflammatory, anti-microbial, anti-glycative and anti-oxidant activities. Similarly, the parent molecules, ET and EA are reported for their neuroprotection and antidepressant activities. Due to the poor bioavailability of ET and EA, the in vivo functional activities cannot be attributed exclusively to these compounds. Elevated monoamine oxidase (MAO) activities are responsible for the inactivation of monoamine neurotransmitters in neurological disorders, such as depression and Parkinson's disease. In this study, we examined the inhibitory effects of urolithins (A, B and C) and EA on MAO activity using recombinant human MAO-A and MAO-B enzymes. Urolithin B was found to be a better MAO-A enzyme inhibitor among the tested urolithins and EA with an IC50 value of 0.88 µM, and displaying a mixed mode of inhibition. However, all tested compounds exhibited higher IC50 (>100 µM) for MAO-B enzyme.

15.
Antibiotics (Basel) ; 9(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392709

RESUMO

A series of ethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-3-carboxylates 4a-f and dimethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylates 4g-k have been synthesized and evaluated for their anti-tubercular (TB) activities against H37Rv (American Type Culture Collection (ATCC) strain 25177) and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis by resazurin microplate assay (REMA). Molecular target identification for these compounds was also carried out by a computational approach. All test compounds exhibited anti-tuberculosis (TB) activity in the range of 8-128 µg/mL against H37Rv. The test compound dimethyl-1-(4-fluorobenzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylate 4j emerged as the most promising anti-TB agent against H37Rv and multidrug-resistant strains of Mycobacterium tuberculosis at 8 and 16 µg/mL, respectively. In silico evaluation of pharmacokinetic properties indicated overall drug-likeness for most of the compounds. Docking studies were also carried out to investigate the binding affinities as well as interactions of these compounds with the target proteins.

16.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 4): 567-571, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32280505

RESUMO

The title compound, C24H18FNO3, crystallizes in the monoclinic centrosymmetric space group P21/n and its mol-ecular conformation is stabilized via C-H⋯O intra-molecular inter-actions. The supra-molecular network mainly comprises C-H⋯O, C-H⋯F and C-H⋯π inter-actions, which contribute towards the formation of the crystal structure. The different inter-molecular inter-actions have been further analysed via Hirshfeld surface analysis and fingerprint plots.

17.
Drug Des Devel Ther ; 14: 1027-1039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214795

RESUMO

BACKGROUND AND PURPOSE: Tuberculosis has been reported to be the worldwide leading cause of death resulting from a sole infectious agent. The emergence of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has made the battle against the infection more difficult since most currently available therapeutic options are ineffective against these resistant strains. Therefore, novel molecules need to be developed to effectively treat tuberculosis disease. Preliminary docking studies revealed that tetrahydropyrimidinone derivatives have favorable interactions with the thymidylate kinase receptor. In the present investigation, we report the synthesis and the mycobacterial activity of several pyrimidinones and pyrimidinethiones as potential thymidylate kinase inhibitors. METHODS: The title compounds (1a-d) and (2a-b) were synthesized by a one-pot three-component Biginelli reaction. They were subsequently characterized and used for whole-cell anti-TB screening against H37Rv and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by the resazurin microplate assay (REMA) plate method. Molecular modeling was conducted using the Accelry's Discovery Studio 4.0 client program to explain the observed bioactivity of the compounds. The pharmacokinetic properties of the synthesized compounds were predicted and analyzed. RESULTS: Of the compounds tested for anti-TB activity, pyrimidinone 1a and pyrimidinethione 2a displayed moderate activity against susceptible MTB H37Rv strains at 16 and 32 µg/mL, respectively. Only compound 2a was observed to exert modest activity at 128 µg/mL against MTB strains with cross-resistance to rifampicin and isoniazid. The presence of the trifluoromethyl group was essential to retain the inhibitory activity of compounds 1a and 2a. Molecular modeling studies of these compounds against thymidylate kinase targets demonstrated a positive correlation between the bioactivity and structure of the compounds. The in-silico ADME (absorption, distribution, metabolism, and excretion) prediction indicated favorable pharmacokinetic and drug-like properties for most compounds. CONCLUSION: Pyrimidinone 1a and pyrimidinethione 2a were identified as the leading compounds and can serve as a starting point to develop novel anti-TB therapeutic agents.


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Pirimidinonas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade
18.
Molecules ; 25(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183140

RESUMO

Malaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.


Assuntos
Anopheles/efeitos dos fármacos , Simulação por Computador , Inseticidas/toxicidade , Malária/parasitologia , Mosquitos Vetores/efeitos dos fármacos , Quinazolinas/toxicidade , Animais , Cristalografia por Raios X , Inseticidas/síntese química , Inseticidas/química , Larva/efeitos dos fármacos , Modelos Moleculares , Conformação Molecular , Quinazolinas/síntese química , Quinazolinas/química , Estereoisomerismo
19.
Antibiotics (Basel) ; 8(4)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816928

RESUMO

Novel series of diversely substituted indolizines were designed, synthesized, and evaluated for their in vitro anti-mycobacterial activity against H37Rv and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB). Many compounds exhibited significant inhibitory activity against MTB H37Rv strains. Indolizines 2d, 2e, and 4 were also found to be active against MTB clinical isolates with multi-resistance to rifampicin and isoniazid. Indolizine 4 was identified as the most promising anti-mycobacterial agent, displaying minimum inhibitory concentration (MIC) values of 4 and 32 µg/mL against H37Rv and MDR strains, respectively. Furthermore, an in silico study was carried out for prospective molecular target identification and revealed favorable interactions with the target enzymes CYP 121, malate synthase, and DNA GyrB ATPase. None of the potent molecules presented toxicity against peripheral blood mononuclear (PBM) cell lines, demonstrating their potentiality to be used for drug-sensitive and drug-resistant tuberculosis therapy.

20.
PLoS One ; 14(10): e0223413, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618227

RESUMO

Neisseria meningitidis is the primary cause of bacterial meningitis in many parts of the world, with considerable mortality rates among neonates and adults. In Saudi Arabia, serious outbreaks of N. meningitidis affecting several hundreds of pilgrims attending Hajj in Makkah were recorded in the 2000-2001 season. Evidence shows increased rates of bacterial resistance to penicillin and other antimicrobial agents that are used in the treatment of the meningococcal disease. The host's immune system becomes unable to recognize the polysialic acid capsule of the resistant N. meningitidis that mimics the mammalian cell surface. The biosynthetic pathways of sialic acid (i.e., N-acetylneuraminic acid [NANA]) in bacteria, however, are somewhat different from those in mammals. The largest obstacle facing previously identified inhibitors of NANA synthase (NANAS) in N. meningitidis is that these inhibitors feature undesired chemical and pharmacological characteristics. To better comprehend the binding mechanism underlying these inhibitors at the catalytic site of NANAS, we performed molecular modeling studies to uncover essential structural aspects for the ultimate recognition at the catalytic site required for optimal inhibitory activity. Applying two virtual screening candidate molecules and one designed molecule showed promising structural scaffolds. Here, we report ethyl 3-benzoyl-2,7-dimethyl indolizine-1-carboxylate (INLZ) as a novel molecule with high energetic fitness scores at the catalytic site of the NmeNANAS enzyme. INLZ represents a promising scaffold for NmeNANAS enzyme inhibitors, with new prospects for further structural development and activity optimization.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Ácido N-Acetilneuramínico/síntese química , Ácido N-Acetilneuramínico/farmacologia , Neisseria meningitidis/efeitos dos fármacos , Antibacterianos/química , Humanos , Infecções Meningocócicas/tratamento farmacológico , Infecções Meningocócicas/microbiologia , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ácido N-Acetilneuramínico/química , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...